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Abstract  
This study addresses the growing challenge of accurate wildfire prediction by integrating low-

cost, real-time sensors into fire spread simulations. Traditional models, which often rely on 

static data, tend to underestimate risks, particularly concerning plants’ moisture content, a 

crucial factor in fire dynamics. Our research enhances an existing cellular automata model by 

incorporating real-time data from dense networks of low-cost sensors that monitor 

environmental variables such as temperature, humidity, and plant moisture levels. The 

simulations reveal that lower moisture conditions significantly accelerate fire spread and 

increase the total burned area. These findings underscore the importance of real-time data 

integration in wildfire management, improving the precision of predictions and enabling more 

effective prevention and response strategies. By deploying these low-cost sensors, especially 

in remote and high-risk areas, fire management teams can better anticipate and mitigate the 

impact of wildfires. This approach has the potential to significantly enhance wildfire resilience 

in the face of increasing fire incidents driven by the climate crisis. 
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1. Introduction 

Fires have significant ecological and human impacts, causing biodiversity loss, habitat destruction, 

and long-term soil changes that hinder vegetation recovery [1]. Smoke from wildfires poses health risks, 

while economic losses in sectors like forestry, agriculture, and tourism can be severe [1]. The 

destruction of infrastructure and homes further adds to the financial and social burden [1]. 

A key factor in fire behavior is plants’ water content. Plants with higher moisture resist ignition and 

slow fire spread, while those with low water content burn more easily, accelerating wildfires [6]. 

Monitoring vegetation’s moisture is essential for predicting and managing fire risks [16]. 

Current fire prediction models combine empirical data and computational techniques, incorporating 

meteorological data, soil moisture, and vegetation types to estimate plant water content's impact on fires 

[1, 12]. Remote sensing, such as satellite imagery, offers real-time monitoring, improving fire spread 

predictions [8]. 

Sensors are also vital, measuring temperature, humidity, soil moisture, and plants’ water content in 

real-time. These sensors are affordable, easy to deploy, and particularly useful in remote areas, 

enhancing fire risk assessments and response strategies. Integrating sensor data into fire models 

improves fire management [14]. 
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1.1. Motivation and Contribution 

Supporting firefighting and prevention is vital due to the rising frequency and severity of wildfires 

from climate change and human activity. Current simulation systems struggle with real-time data, 

especially dynamic variables such as Live Fuel Moisture Content (LFMC), which are crucial for 

accurate wildfire predictions. These models often use static data, leading to underestimated and/or 

outdated risks. Integrating advanced, low-cost sensors and real-time data into these systems is essential 

for better accuracy, faster responses, and improved fire resilience [6, 14]. 

In wildfire modeling, accurately simulating fire spread is essential for effective management. 

Combining static data (like topography and vegetation) with dynamic data (such as real-time weather 

and plant moisture) can greatly improve predictions’ accuracy. The cellular automata approach, as 

detailed in the literature [3, 7, 8, 12, 15, 16], is a powerful framework for integrating these data sources. 

By incorporating both static and real-time information at the cell level, this model better captures the 

complex interactions driving wildfires’ spread [12]. This optimization involves calibrating the model 

to adjust for variations in fuel moisture, wind speed, and other environmental conditions that influence 

fire behavior.  

Advances in affordable humidity sensors now allow for dense networks to monitor plant moisture 

in real-time across vulnerable areas. These durable sensors, part of a broader environmental system, 

collect and analyze data continuously [14]. Real-time updates on weather, moisture, and wind can be 

integrated into simulations, ensuring they reflect current conditions and help fire management agencies 

make well informed decisions. This requires advanced algorithms to dynamically process and apply 

data throughout the simulation [12]. 

2. Background – Related Work 

In the realm of wildfire management, the integration of advanced technologies has significantly 

improved early detection and monitoring capabilities. Modern systems employ a variety of methods, 

including ensemble learning, geographic information systems (GIS) [1, 2], intelligent vision-based 

systems, and Internet of Things (IoT) technologies to enhance the accuracy and speed of detection [4, 

5, 17]. 

Additionally, the use of drones equipped with sensors and cameras introduces a mobile and flexible 

approach to monitoring, capable of covering large and inaccessible areas. These drones can quickly 

detect smoke and other indicators of wildfires, providing real-time data that is vital for timely 

intervention [18]. 

Cellular Automata (CA) models are highly effective in simulating the complex dynamics of wildfire 

spread. These models represent the landscape as a grid, where each cell evolves based on rules 

influenced by the state of its neighboring cells. Noteworthy implementations include Alexandridis’s et 

al. [3,7,12] application of CA integrated with GIS and meteorological data, which significantly 

enhances the ability to predict fire evolution across mountainous and heterogeneous forest landscapes. 

The balance between internal and external moisture is crucial for plant survival, especially in areas 

with variable water availability. Internal moisture, stored in plant tissues, helps buffer against short-

term water shortages during high transpiration periods. This internal reserve is linked to external 

moisture sources, such as soil water and atmospheric humidity, which affect how plants replenish their 

reserves. For shallow-rooted herbaceous species, internal moisture closely correlates with upper soil 

moisture, as indicated by the Keetch-Byram Drought Index (KBDI) [6, 10, 11, 13]. 

3. Proposed Methodology 

In this study, we propose a novel approach to wildfire simulation by elaborating the cellular 

automata model developed by Alexandridis et al. [3, 7] which simulates wildfires’ spread across 

heterogeneous vegetations landscapes and incorporating real time measurements. Each cell interacts 

with its neighbors based on factors such as vegetation type, topography, and environmental conditions 

such as wind speed, thereby effectively capturing fire dynamics. Our methodology highlights the 



importance of incorporating real-time plants’ moisture measurements to enhance the accuracy and 

timely responsiveness of wildfire simulations. Although real-time data integration is planned for future 

work, we currently use varying moisture levels in our simulations to illustrate its potential impact. 

 

We conducted simulations across three distinct scenarios to explore how varying moisture levels 

influence wildfires’ behavior: 

 

• Uniform Moisture Content (Low or Normal): The entire field has uniform moisture 

content, allowing us to assess the impact of consistent moisture levels on fire spread. 

Moving forward, this will be referred to as Uniform (Low or Normal). 

• Central Ellipse of Higher Moisture (Low or Normal): The field has lower overall 

moisture, with a central elliptical area of higher moisture content. This scenario 

demonstrates how variations within a field affect fire’s dynamics, particularly in interactions 

with areas of differing moisture and thus flammability. This will be referred to as Ellipse 

(Low or Normal). 

• Three Smaller Ellipses with Higher Moisture (Low or Normal): The central ellipse is 

divided into three smaller ellipses with higher moisture content, within an otherwise lower-

moisture field. This setup provides insights into how dispersed varying moisture patches 

influence fire’s progression and direction. This will be referred to as Small Ellipse (Low or 

Normal). 

 

In each scenario, we conducted 10 simulations using two moisture levels—normal and low—and 

calculated the averages to assess how moisture variability influences wildfire behavior. 

 

Although real-time moisture data integration is not yet implemented, these controlled simulations 

focus on the importance of such data for accurate fire modeling. Our results provide a foundational 

understanding of how plants’ moisture content affects fire dynamics, paving the way for future models 

that incorporate real-time sensor data to enhance wildfire predictions and inform fire management 

4. Results 

From the simulation scenarios, we recorded metrics on the average percent burned over time and 

final percent burned. 

 

Figure 1 and Figure 2. highlights that low moisture scenarios generally lead to a steeper increase 

in percent burned over time, indicative of a more aggressive and sustained spread. This is particularly 

evident in the Small Ellipses Low and Uniform Low scenarios, where the percentage burned increases 

sharply as the fire progresses. Conversely, Normal scenarios show a more gradual increase, with some, 

like Ellipse Normal, reaching a plateau, suggesting the fire may have naturally limited its spread. 

 

Finally, Figure 3 shows that low moisture conditions consistently result in a higher final percent 

burned across all shapes (Ellipse, Small Ellipses, and Uniform). This indicates that fires under low 

moisture, despite possible variability in spread rate, ultimately consume a larger area. The Ellipse Low 

and Small Ellipses Low scenarios exceed their normal counterparts in final percent burned, reinforcing 

the conclusion that lower moisture contributes to a more extensive spread. Notably, Uniform Low 

achieves the highest final percent burned, underscoring that uniform landscapes vegetation shapes under 

low moisture are particularly susceptible to widespread fire. 

 

 

 



 
Figure 1: Average percent burned over time 
under normal moisture conditions 
 

 
Figure 2: Average percent burned over time 
under low moisture conditions 
 

 

 

 
Figure 3: Final percent burned across all scenarios 

 

5. Discussion 

The analysis of wildfire simulations across different landscape vegetation shapes and moisture 

conditions underscores the critical importance of accurately predicting wildfire behavior to inform 

effective fire prevention strategies. The findings highlight how a low-cost system that can accurately 

monitor and model these conditions is essential for mitigating the risks associated with wildfires. Low 

Moisture Conditions were found to lead to more sustained and, in some cases, faster fire spread. This 

suggests that real-time monitoring of moisture levels using a low-cost system could be crucial in 

predicting and responding to wildfire threats before they become unmanageable. The ability to detect 

and model these conditions in advance allows for better allocation of resources and quicker response 

times. The simulations show that Low Moisture Conditions result in a significantly larger area being 

burned. By utilizing a low-cost system to continuously track environmental factors like moisture levels, 

fire prevention teams can anticipate areas at higher risk. This proactive approach enables targeted 

prevention efforts, such as controlled burns or resource pre-/re-positioning, to minimize the potential 

impact of wildfires. 

The rapid increase in the average percent burned over time under low moisture conditions illustrates 

the need for accurate, ongoing data collection. A low-cost system capable of providing this data in real-

 

  

  

  

  

  

  

  

  

  

   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  
  
  
  
  
  
 
  
 
 
  
  

    

                          

       

     
        

       

 

  

  

  

  

  

  

  

  

  

   

   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  
  
  
  
 
  
 
 
  
 
 
  
 
 

    

                       

       

              

       

                 

              

           

                     

                  

              

           

                    

  
  

  
  
 

                                     



time can help predict the trajectory of a fire more effectively. This information is vital for developing 

dynamic fire management strategies that adapt to changing conditions, reducing the likelihood of fires 

spreading uncontrollably. 

 

6. Conclusion 

The increasing frequency of wildfires due to climate change highlights the need for improved fire 

prediction models. A key factor in fire dynamics is plants’ moisture content, as plants with lower 

moisture burn more easily and intensify fire spread. Traditional models using static data often 

underestimate this risk, making real-time data integration crucial. By using low-cost sensors to measure 

environmental variables like plant moisture, temperature, and humidity, we aim to enhance fire 

simulations for more accurate predictions. 

 

Our simulation results show that low moisture conditions significantly accelerate fire spread, leading 

to faster velocities, larger burned areas, and more sustained fire behavior. These effects are particularly 

evident in uniform-shaped areas, where the lack of natural barriers increases vulnerability. This 

underscores the importance of monitoring both moisture levels and terrain characteristics to improve 

wildfire risk assessment. Variations in moisture distribution also dramatically impacted fire dynamics, 

with lower moisture levels consistently causing faster and more widespread fire spread across all 

scenarios. 

 

In the future, we plan to conduct field experiments by deploying our proposed low-cost sensors in 

high-risk wildfire areas. These sensors will continuously monitor moisture and environmental 

conditions in real time, allowing us to integrate this data into our model. This real-world experiment 

will test the system's ability to improve fire predictions and enhance wildfire management strategies, 

providing more timely and effective prevention and response measures. 
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